Tiling Proofs of Recent Sum Identities Involving Pell Numbers

نویسندگان

  • Arthur T. Benjamin
  • Sean S. Plott
چکیده

In a recent note, Santana and Diaz–Barrero proved a number of sum identities involving the well–known Pell numbers. Their proofs relied heavily on the Binet formula for the Pell numbers. Our goal in this note is to reconsider these identities from a purely combinatorial viewpoint. We provide bijective proofs for each of the the electronic journal of combinatorics 13 (2006), #R00 1 results by interpreting the Pell numbers as enumerators of certain types of tilings. In turn, our proofs provide helpful insight for straightforward generalizations of a number of the identities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tiling Proofs of Some Formulas for the Pell Numbers of Odd Index

We provide tiling proofs of several algebraic formulas for the Pell numbers of odd index, all of which involve alternating sums of binomial coefficients, as well as consider polynomial generalizations of these formulas. In addition, we provide a combinatorial interpretation for a Diophantine equation satisfied by the Pell numbers of odd index.

متن کامل

In Praise of an Elementary Identity of Euler

We survey the applications of an elementary identity used by Euler in one of his proofs of the Pentagonal Number Theorem. Using a suitably reformulated version of this identity that we call Euler’s Telescoping Lemma, we give alternate proofs of all the key summation theorems for terminating Hypergeometric Series and Basic Hypergeometric Series, including the terminating Binomial Theorem, the Ch...

متن کامل

Tiling a (2 × n)-Board with Squares and Dominoes

The Fibonacci numbers and the Pell numbers can be interpreted as the number of tilings of a (1 × n)-board by colored squares and dominoes. We explore the tilings of (2 × n)-boards by colored squares and dominoes. We develop a recurrence relation and prove several combinatorial identities in the style of recent work by Benjamin and Quinn. We also give a bijection between these (2 × n)-tilings an...

متن کامل

On the sum of Pell and Jacobsthal numbers by matrix method

In this paper‎, ‎we define two $n$-square upper Hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph‎. ‎We investigate relations between permanents and determinants of these upper Hessenberg matrices‎, ‎and sum formulas of the well-known Pell and Jacobsthal sequences‎. ‎Finally‎, ‎we present two Maple 13 procedures in order to calculate permanents of t...

متن کامل

k-Pell, k-Pell-Lucas and Modified k-Pell Numbers: Some Identities and Norms of Hankel Matrices

In this paper we present some identities involving terms of k-Pell, k-Pell-Lucas and Modified k-Pell sequences. We also give some results on the column and row norms of Hankel matrices which entries are numbers of these sequences. Mathematics Subject Classification: 11B37, 11B83, 15A60

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006