Tiling Proofs of Recent Sum Identities Involving Pell Numbers
نویسندگان
چکیده
In a recent note, Santana and Diaz–Barrero proved a number of sum identities involving the well–known Pell numbers. Their proofs relied heavily on the Binet formula for the Pell numbers. Our goal in this note is to reconsider these identities from a purely combinatorial viewpoint. We provide bijective proofs for each of the the electronic journal of combinatorics 13 (2006), #R00 1 results by interpreting the Pell numbers as enumerators of certain types of tilings. In turn, our proofs provide helpful insight for straightforward generalizations of a number of the identities.
منابع مشابه
Tiling Proofs of Some Formulas for the Pell Numbers of Odd Index
We provide tiling proofs of several algebraic formulas for the Pell numbers of odd index, all of which involve alternating sums of binomial coefficients, as well as consider polynomial generalizations of these formulas. In addition, we provide a combinatorial interpretation for a Diophantine equation satisfied by the Pell numbers of odd index.
متن کاملIn Praise of an Elementary Identity of Euler
We survey the applications of an elementary identity used by Euler in one of his proofs of the Pentagonal Number Theorem. Using a suitably reformulated version of this identity that we call Euler’s Telescoping Lemma, we give alternate proofs of all the key summation theorems for terminating Hypergeometric Series and Basic Hypergeometric Series, including the terminating Binomial Theorem, the Ch...
متن کاملTiling a (2 × n)-Board with Squares and Dominoes
The Fibonacci numbers and the Pell numbers can be interpreted as the number of tilings of a (1 × n)-board by colored squares and dominoes. We explore the tilings of (2 × n)-boards by colored squares and dominoes. We develop a recurrence relation and prove several combinatorial identities in the style of recent work by Benjamin and Quinn. We also give a bijection between these (2 × n)-tilings an...
متن کاملOn the sum of Pell and Jacobsthal numbers by matrix method
In this paper, we define two $n$-square upper Hessenberg matrices one of which corresponds to the adjacency matrix of a directed pseudo graph. We investigate relations between permanents and determinants of these upper Hessenberg matrices, and sum formulas of the well-known Pell and Jacobsthal sequences. Finally, we present two Maple 13 procedures in order to calculate permanents of t...
متن کاملk-Pell, k-Pell-Lucas and Modified k-Pell Numbers: Some Identities and Norms of Hankel Matrices
In this paper we present some identities involving terms of k-Pell, k-Pell-Lucas and Modified k-Pell sequences. We also give some results on the column and row norms of Hankel matrices which entries are numbers of these sequences. Mathematics Subject Classification: 11B37, 11B83, 15A60
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006